Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34637870

RESUMEN

INTRODUCTION: Major depressive disorder is associated with chronic inflammation and deficient production of brain-derived neurotrophic factor (BDNF). Bone marrow mononuclear cell (BMMC) transplantation has an anti-inflammatory effect and has been proven effective in restoring non-depressive behavior. This study investigated whether BMMC transplantation can prevent the development of depression or anxiety in chronic mild stress (CMS), as well as its effect on inflammatory and neurogenic molecules. METHOD: Three groups of animals were compared: BMMC-transplanted animals subjected to CMS for 45 days, CMS non-transplanted rats, and control animals. After the CMS period, the three groups underwent the following behavioral tests: sucrose preference test (SPT), eating-related depression test (ERDT), social avoidance test (SAT), social interaction test (SIT), and elevated plus maze test (EPMT). Transplanted cell tracking and measurement of the expression of high-mobility group box 1 (HMGB1), interleukin-1ß (IL-1ß), tumor necrosis factor (TNFα), and BDNF were performed on brain and spleen tissues. RESULTS: BMMC transplantation prevented the effects of CMS in the SPT, ERDT, SAT, and SIT, while prevention was less pronounced in the EPMT. It was found to prevent increased HMGB-1 expression induced by CMS in the hippocampus and spleen, increase BDNF expression in both tissues, and prevent increased IL-1ß expression in the hippocampus alone, while no effect of the transplant was observed in the TNFα expression. In addition, no transplanted cells were found in either the brain or spleen. CONCLUSIONS: BMMC transplantation prevents the development of depression and anxiety-like behavior triggered by CMS. It could prevent increased HMGB-1 and IL-1ß expression in the hippocampus and increased BDNF expression in the same tissue. Cell treatment represents a further perspective in the research and treatment of depression and possible mood disorders.


Asunto(s)
Trasplante de Médula Ósea , Depresión/prevención & control , Trastorno Depresivo Mayor , Inflamación , Neurogénesis , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Ratones Transgénicos , Ratas , Conducta Social , Estrés Fisiológico/fisiología , Factor de Necrosis Tumoral alfa
2.
Brain Struct Funct ; 225(9): 2799-2813, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33128125

RESUMEN

Temporal lobe epilepsy is the most common form of intractable epilepsy in adults. More than 30% of individuals with epilepsy have persistent seizures and have drug-resistant epilepsy. Based on our previous findings, treatment with bone marrow mononuclear cells (BMMC) could interfere with early and chronic phase epilepsy in rats and in clinical settings. In this pilocarpine-induced epilepsy model, animals were randomly assigned to two groups: control (Con) and epileptic pre-treatment (Ep-pre-t). The latter had status epilepticus (SE) induced through pilocarpine intraperitoneal injection. Later, seizure frequency was assessed using a video-monitoring system. Ep-pre-t was further divided into epileptic treated with saline (Ep-Veh) and epileptic treated with BMMC (Ep-BMMC) after an intravenous treatment with BMMC was done on day 22 after SE. Analysis of neurobehavioral parameters revealed that Ep-BMMC had significantly lower frequency of spontaneous recurrent seizures (SRS) in comparison to Ep-pre-t and Ep-Veh groups. Hippocampus-dependent spatial and non-spatial learning and memory were markedly impaired in epileptic rats, a deficit that was robustly recovered by treatment with BMMC. Moreover, long-term potentiation-induced synaptic remodeling present in epileptic rats was restored by BMMC. In addition, BMMC was able to reduce abnormal mossy fiber sprouting in the dentate gyrus. Molecular analysis in hippocampal tissue revealed that BMMC treatment down-regulates the release of inflammatory cytokine tumor necrosis factor-α (TNF-α) and Allograft inflammatory factor-1 (AIF-1) as well as the Rho subfamily of small GTPases [Ras homolog gene family member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac)]. Collectively, delayed BMMC treatment showed positive effects when intravenously infused into chronic epileptic rats.


Asunto(s)
Trasplante de Médula Ósea , Cognición , Encefalitis/fisiopatología , Epilepsia/fisiopatología , Epilepsia/psicología , Nucleótidos de Guanina/antagonistas & inhibidores , Recuperación de la Función , Animales , Conducta Animal , Trasplante de Médula Ósea/métodos , Modelos Animales de Enfermedad , Epilepsia/terapia , Infusiones Intravenosas , Potenciación a Largo Plazo , Masculino , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...